Nonlinear ELM Simulations with M3D

H. Strauss
4-3-6
Outline

• Overview of M3D
 – Simulation model

• ITER / DIII-D nonlinear ELM simulations
 – DIII-D: Crash cycle
 – ITER: outflow to divertor

• 2 fluid effects
 – Gyroviscous stabilization of high n
 – Stabilization of resistive modes
 – Nonlinear

• Pedestal model
 – EFIT, XGC

• Summary and future plans
M3D

- **Extended MHD**
 - Resistive MHD
 - 2 fluid
 - Neoclassical model
 - Coupling to neoclassical kinetic code XGC

- **Algorithmics**
 - Partially implicit
 - Parallel (mpi and omp implementations)
 - Unstructured poloidal mesh – includes magnetic separatrix
 - 1st – 3rd order FEL
 - Toroidal pseudospectral or FD

- **Vacuum modeled as 3D resistivity**
 - varies as $T^{-3/2}$
 - $S = 10^6$ at core boundary
 - $S = 10^2$ to simulate vacuum as cold plasma
ELM in ITER
ITER example

Circ \(f = 0.000 \)

\[
\text{max} \quad 0.44E+00 \\
\text{min} \quad -0.57E+00 \\
t = 0.00
\]

zoom \(f = 0.000 \)
ITER ELM: pressure

\[
\begin{align*}
\text{p max} & \quad 0.29E+00 \\
\text{min} & \quad 0.00E+00 \quad t = \quad 0.00 \\
\text{p max} & \quad 0.34E+00 \\
\text{min} & \quad -0.16E-02 \quad t = \quad 53.15 \\
\text{p max} & \quad 0.29E+00 \\
\text{min} & \quad -0.19E-02 \quad t = \quad 67.64
\end{align*}
\]
ELM pressure: initial, mode growth, outflow
ITER – pressure profiles
initial, ELM crash, relaxation
Mesh for DIII-D

- Radial mesh packing to resolve gradients at the separatrix
- Angular packing to resolve ballooning modes
- Example
 - 35x200
 - n = 0, 5, 10, ... 25
Poloidal magnetic flux
nonlinear ELM DIII-D 086166

Equilibrium flux

perturbed flux-unstable mode
nonlinear ELM: pressure

Shows pressure initially and near ELM saturation
time development of ELM after saturation pressure smooths out

$t = 27$
Initial p

$t = 67$
ELM

$t = 106$
relaxation
Time development: \(p(R) \) profiles:
pressure pedestal expands across separatrix, then relaxes
and moves inwards

Drop off to the right of the plots is an artifact
2 Fluid: linear dispersion relation

• ELMs are caused by MHD instabilities
 – Edge kinks (peeling) n < 10
 – Ballooning n > 10

• WKB dispersion relation with gyroviscosity
 – Have verified stabilization in M3D simulations
 – n > 20 – 30 stable in DIII-D
 – H = 0.02 - 0.03

• Resistive modes: stable or slowed

\[\gamma = -\frac{i}{2} \omega_{*i} + (\gamma_{MHD}^2 - \frac{\omega_{*i}^2}{4})^{1/2} \]

\[H = \frac{c}{\omega_{pi} R} \quad \omega_{*i} \sim nH \]
H = 0.06 is stability boundary, n = 10
Linear perturbed poloidal magnetic flux

MHD, $n = 10$

$2F, H = 0.1, n = 10$
Nonlinear effect of H

H has little effect on low n modes

\[H = \frac{c}{\omega_{pi}R} \]

\[\omega_\ast \sim nH\beta' \]
Pedestal model

• **ELM instability**
 – Edge kinks: driven by bootstrap current
 – Ballooning modes: driven by pedestal pressure gradient

• **Previous simulations used EFIT equilibrium**
 – Bootstrap current model might not be valid at edge

• **XGC – neoclassical kinetic code**
 – In reasonable agreement with experiments
 – Calculates pedestal buildup
 – Calculates bootstrap current

• **M3D / XGC**
 – Profiles of p, n, … given to M3D code
 – If unstable, calculate ELM crash
Initial XGC pressure profile

Initial EQDSK is not consistent with XGC p profile
need bootstrap current from XGC (or model)
add XGC + existing EQDSK equilibrium
Summary and future plans

• ITER / DIII-D nonlinear ELM simulations
 – Crash and outflow to divertor
 – Quantify loss to wall / divertor
 – Higher resolution
 – Better computational mesh

• 2 fluid effects
 – Study drift resistive modes
 – Include electron diamagnetic drift

• Pedestal model
 – Improve coupling with XGC code