Continuum kinetic code for edge plasmas and the ESL project*

M.R. Dorr, J.A.F. Hittinger, and G.D. Kerbel; CASC, LLNL
E. Belli, J. Candy, and P.B. Snyder; GA
K. Bodi, S.I. Krasheninnikov, and A.Yu. Pigarov⁺; UCSD
P. Colella and B. van Straalen; LBNL
G.W. Hammett⁺ and H. Qin⁺; PPPL
R.W. Harvey⁺; Comp-X
J.R. Myra⁺; Lodestar

Presented at the ECC Workshop
Myrtle Beach, SC, April 3, 2006

* Work performed under the auspices of U.S. DOE by the Univ. of Calif. Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
What is the ESL?

- **ESL = Edge Simulation Laboratory**
 - Develop an edge gyrokinetic code using continuum [evolving \(f(x,v) \) on a 5-D mesh] methods
 - OFES base-program activity
 - Collaboration: LLNL, GA, UCSD, LBNL, CompX, Lodestar, PPPL. Others welcome
 - Outgrowth of LLNL LDRD project which has developed TEMPEST, presently a 4-D edge kinetic code

- **Why a kinetic code?**
 - Ion drift orbit width \(\Delta \sim \) pedestal width \(L_p \)
 - Collisional mean free path \(\sim \) connec. length
 - ITER pedestal deeply in kinetic regime; divertor strongly collisional

- **Gyrokinetic, because still \(\omega \ll \omega_c \)**
 - But extensions required because \(\Delta \sim L_p \)
Kinetic equations for F include drifts, acceleration, and Fokker-Planck collision

\[
\frac{\partial F_\alpha}{\partial t} + \vec{v}_d \cdot \nabla_\perp F_\alpha + (\vec{v}_{||\alpha} + v_{Banos}) \nabla_|| \partial F_\alpha \\
+ \left[q \frac{\partial \langle \Phi_0 \rangle}{\partial t} + \bar{\mu} \frac{\partial B}{\partial t} - \frac{qB}{B^*} \vec{v}_|| \nabla_|| \langle \delta \phi \rangle - qv_0^0 \cdot \nabla \langle \delta \phi \rangle \right] \frac{\partial F_\alpha}{\partial E_0} \\
= C(F_\alpha, F_\alpha),
\]
Why we chose the continuum approach

• Noise in PIC simulations, especially a concern for edge because
 – Inapplicability of δf (can have large fluctuations; a priori unknown background f; growing weights problem following L-H transition)
 – Still need accuracy in regions and times with small fluctuations
 – Large density variation across region

• Expense of fully nonlinear gyrokinetic PIC collision operators in strongly collisional limit (and hardly any examples)

• Advanced fluid numerical techniques available to continuum GK
 – High-order discretizations
 – AMR in v and x -- can have high res in v space only where needed
 – Implicit timestepping

• Successful examples of core continuum GK codes (GS2, GYRO, GENE) -- substantial physics, extensively applied
Main code features (current/planned)

- Continuum solution to GK equations
- Full-f, and δf option available
- Extension of GK equations for improved applicability to edge problems
- Electrostatic initially; will be electromagnetic
- Full divertor geometry; full 2D equilibrium potential structure
- Runnable as
 - 4-D for transport with $F(\Psi, \theta, \epsilon, \mu)$, or
 - 5-D for turbulence with $F(\Psi, \theta, \phi, \epsilon, \mu)$
- Adaptivity
 - Built in AMR framework
 - Funding permitting: dynamic grid alignment (to follow large δB)
- Optional fluid equations in same framework
Some recent history: LLNL LDRD funding has been used to initiate an edge continuum code (FY04-06)

We were successful in convincing LLNL management to utilize assets of three LLNL groups

1. **Fusion Energy Program**
 - Underlying edge gyrokinetic equations (with PPPL)
 - Edge physics and (core) gyrokinetic simulations
 - V&V

2. **Center for Advanced Scientific Computing**
 - Code framework
 - Numerical methods

3. **Chemistry and Material Sciences**
 - Impurity production via material sputtering
 - Near-surface plasma chemistry (with UCB)
LLNL LDRD code development strategy: systematic progression of increasing complexity

- **Prototype**
 - 1D Space / 2D Velocity
 - Collisions and Advection

- **FY05**
 - 2D Space / 2D Velocity
 - A Kinetic Analogue to UEDGE

- **FY06**
 - 3D Space / 2D Velocity
 - A Kinetic Analogue to BOUT

ESL →
Current technical status for LDRD work

- **TEMPEST code operational in 4D**
 - Physics content: parallel streaming, drifts, Fokker-Planck collisions (linear, nonlinear), toroidal annulus or full divertor geometry, electrostatic field solve (gyrokinetic Poisson)
 - V&V in progress: endloss physics, neoclassical transport, field solve
 - Generalized GK formulation for steep gradients (LDRD support for PPPL); next step is distillation of dominant terms

- **5D extension formulated; coding beginning**
 - Will enable electrostatic edge turbulence simulation
 - Expect to complete this summer
 - Will be “0th generation” ESL Code -- lessons learned will feed into first formal ESL design
We have designed and implemented a 4D edge simulation framework; added physics “born parallel”
We have implemented a gyrokinetic Poisson equation field solver

\[
\left(\sum_{\alpha} \frac{\rho_\alpha^2}{2\lambda_{D\alpha}^2} \right) \nabla^2 \Phi + \left(\sum_{\alpha} \frac{\rho_\alpha^2}{2\lambda_{D\alpha}^2} \nabla \cdot \ln N_\alpha \right) \cdot \nabla \Phi + \nabla^2 \Phi = -4\pi e \left(\sum_{\alpha} Z_\alpha N_\alpha - n_e \right) - \sum_{\alpha} \frac{\rho_\alpha^2}{2\lambda_{D\alpha}^2} \frac{1}{N_\alpha Z_\alpha e} \nabla^2 P_{\perp \alpha}
\]

- Discretized in y-q coordinates using standard finite differencing
- Uses Hypre library of parallel linear algebra solvers and preconditioners
 - Solvers:
 - Conjugate Gradient (CG)
 - Generalized Minimum Residual (GMRES)
 - Stabilized BiConjugate Gradient (BiCGSTAB)
 - Preconditioners
 - Diagonal scaling
 - Block Gauss-Seidel with PFMG or SMG in each block
 - BoomerAMG
- Currently implemented with adiabatic electron model
It is important to have physical conservation properties in the collision and moment packages.
We have verified aspects of the 3D & 4D TEMPEST on known physics problems (see A. Xiong talk, Thurs.)

Examples of key physics aspects tested

1. Fokker-Planck collisions for scattering into velocity-space loss cones; important because:
 • electrons are potentially confined by divertor/wall sheath potentials - non-Maxwellian, high-energy tails can develop
 • magnetically trapped ions scattering into loss-cones near magnetic separatrix

2. Neoclassical flow and transport for core ions
 • high temperature and low turbulence for H-mode can result in neoclassical ion transport being important

3. Electrostatic field generation and geodesic acoustic modes
 • shear-flow and zonal flows key to turbulence suppression
Test 1: TEMPEST recovers collisional confinement for combined B, Φ well using modest v-space resolution

\[B, \Phi \]

\[S_\parallel \]

Empty loss-cone (Pastukhov); $\sim \tau_p$

Filled loss-cone (collisional); $\sim \tau_c$

Confinement time versus density

Particle confinement time (sec)

Density (cm$^{-3}$)

\[\tau = \tau_p + \tau_c \]

Theory

Simulation
Test 2: Neoclassical parallel flow on closed flux surfaces is reproduced

\[<U_{||}> = \frac{E_r}{B_p} - \frac{T_i}{eB_p} (\frac{\partial}{\partial r})(\ln P_i - k \ln T_i) \]

and \(k \) depends on collisionality regime

Simplest test for \(E_r = 0 \) and \(\frac{\partial T_i}{\partial r} = 0 \)

Neoclassical energy transport is also simulated
Test 3: Generation electrostatic potential and Landau damping of geodesic acoustic modes is observed

- Frequency and residual of Φ appear close to Rosenbluth-Hinton theory
Plans
FY06 continuing LDRD code development projects

- **Infrastructure**
 - Improve I/O capabilities (input, viz, etc.)
 - Complete velocity-space finite volume transition
 - Implement 5D data communication routines

- **Physics Algorithms**
 - Generalize gyrokinetic field solve
 - Implement parallel gyroaveraging algorithm
 - For 5D, implement field-aligned ballooning coordinates and physics modules

\[x = \psi - \psi_s, \]
\[y = \theta, \]
\[z = \zeta - \int_{\theta_0}^{\theta} \nu(x, y) dy. \]
FY06-09 ESL plan is based on 4/1/06 start and current budget level

Phase 1
- Design
 - Chombo mods
 - 5D linear EM GK capability; 5D nonlinear ES; transition to Chombo
 - Zero-viscosity e⁻ fluid capability
 - Simple fluid neutrals capability
- Code development:
 - LLNL LDRD (4D, 5D electrostatic GK capability)
- V&V:
 - 4D Design
 - 4D Testing
 - 5D ES Design
 - 5D ES testing

Phase 2
- Design
 - Phase 2 Implementation
 - Fully GK collisions; Nonlinear EM
 - Adaptive grid
- Implementation:
 - 1/1/08
 - 8/1/08
 - 2/1/09
 - 6/1/09

Phase 1 Testing
- Start up long-range activities (multiscale, advanced neutrals) if increased funding allows
Some common areas for possible collaboration with CPES

• Testing math algorithms for solving field equations (electrostatic and electromagnetic)
 – preconditioners; iterative solvers; boundary conditions

• Formulation of complete GK edge equations and useful reductions

• Compare orbit loss (i.e., across separatrix) for steep gradients and self-consistent potential; compare GAM frequency and damping

• Compare parallel kinetic electron heat flux for SOL varying from short (divertor) to long(er) at midplane

• 5D turbulence benchmark, first Cyclone, and then edge-specific

• Common high-level data representation to facilitate comparisons; visualization tools?
Summary

- Continuum gyrokinetic edge code TEMPEST with Fokker-Planck is now working in 4D and passed various verification tests

- The continuum code work has been “nationalized” with the start of the ESL project

- An electrostatic 5D code is the goal by this fall

- There are various areas for collaboration between ESL and CPES