Pedestal Stability Constraints and ELM Dynamics in ITER

P.B. Snyder

1General Atomics, San Diego, USA
2U. of York, York, UK
3LLNL, Livermore, CA USA
4IPP Garching, Germany

Presented at
ECC ITER Workshop
Transport Task Force Meeting
Myrtle Beach, SC

April 3, 2006
Motivation: The Pedestal and ELMs

- **ITER and most BP devices to operate in H-mode**
 - Edge barrier dramatically improves confinement
 - Broadens profiles, leads to high MHD β limit

- **ELMs and the edge pedestal are key fusion plasma issues**
 - “Pedestal Height” strongly impacts core confinement and therefore fusion performance (Q)
 - ELM heat pulses impact plasma facing materials
 - Large ELMs not tolerable in ITER

Predicted Impact of Pedestal Height

Observed Impact of Pedestal Height
The Peeling-Ballooning Model

- Peeling-Ballooning model offers explanation for ELM onset and constraints on pedestal
- ELMs caused by intermediate wavelength (n~3-30) MHD instabilities
 - Both current and pressure gradient driven
 - Complex dependencies on ν_*, shape etc. due to bootstrap current and “2nd stability”, nonlocality and variation in limiting n

The Peeling-Ballooning Model: Code Verification

 - Extended ballooning expansion + peeling
 - Validated against GATO, MISHKA, CASTOR, MARS, BAL-MSC
 - infinite-n ballooning only valid at very high-n
 - Non-locality and kink terms essential
 - Validated with toroidal flow (MARS, CASTOR)
The Peeling-Ballooning Model: Verification against Experiment

DIII-D Shot 119748, Pedestal Stability just before ELM

![Graph showing Kink/Peeling Unstable, Stable, and Ballooning Unstable regions.](image)

- **Successful comparisons to multiple tokamaks both directly and in database studies**
 - Onset of Type I ELMs corresponds to crossing P-B threshold
 - Role of bootstrap current largely confirmed
 - Edge stability analysis becoming routine on some devices
 - MHD physics, taking into account two fluid effects, does a remarkably good job accounting for ELM onset and observed pedestal constraints (as function of width)

Effect of Density (Collisionality) on Peeling-Ballooning Stability

Effect of Density

- **The pedestal current is dominated by bootstrap current**
 - Roughly proportional to p'
 - Decreases with collisionality
- **Lower density means more current at a given p'**
 - Moderate to high density discharges limited by P-B or ballooning modes
 - Very low density discharges may hit kink/peeling boundary
- **Typically:**
 - High-n ballooning -> small Type I ELMs
 - Intermediate n peeling-ballooning -> normal Type I
 - Low n kink/peeling -> QH mode
Theory: QH Mode Exists in Low-n Kink/Peeling Limited Regime

- Detailed Study Using Model Equilibria to Explore Stability Bounds in QH-like discharges

- Weak Shaping (left): QH Regime accessible only at very low density \(n_{\text{ped}}<\sim1.5 \times 10^{13} \text{ cm}^{-3} \)
- Stronger Shaping (right): QH regime can be accessed at higher density (here up to \(n_{\text{ped}}<\sim3 \times 10^{13} \text{ cm}^{-3} \)), more robust
- Low-n modes experience some wall stabilization, despite localization
Experiment: QH Discharges Exist Near Kink/Peeling Boundary

- Stability Studies Perturbing around reconstructed QH Discharges on DIII-D

Moderate Shaping (left): QH operating point near kink/peeling bound, low density $n_{ped} \sim 1.5 \times 10^{13}$ cm$^{-3}$

Strong Shaping (right): QH operating point near kink/peeling bound, higher density QH operation possible, $n_{ped} \sim 3 \times 10^{13}$ cm$^{-3}$

Observed EHO during QH mode has poloidal magnetic signal qualitatively consistent with low-n kink/peeling mode
RMP ELM-free Discharges in Similar Regime

- n=3 Resonant Magnetic Perturbations used to suppress ELMs in low density discharges
- ELM-suppressed shots in stable region, nearest kink/peeling boundary
 - Increasing density causes ELMs to return
- Propose that RMP plays the role of the EHO here
 - Particle, Te, rotation steady state
- While EHO grows only to amplitude needed for steady state, RMP amplitude can be controlled
 - Able to operate a factor of 2 below stability boundaries
Model ITER Equilibria Constructed to Calculate Pedestal Stability Bounds

- Match design B_t, I_p, R, a, κ, δ, $<n_e>$
- Tanh pedestals, polynomial in core, bootstrap aligned current in pedestal
- The pedestal width (Δ) is varied from \sim1% to 12% of the poloidal flux ($\Delta/a\sim0.005-0.07$)
- At each value of Δ, T_{ped} is increased (with J_{bs} calculated consistently) until instabilities ($n=8,10,15,20,30$ tested with ELITE) are triggered

ITER model profiles for $\Delta/a\sim0.03$, $T_{\text{ped}}\sim5$keV case
Pedestal Stability Constraints on T_{ped}, β_{Nped}, α_{cped}

- T_{ped} limit is a strong function of pedestal width, but notably sub-linear, particularly at narrow width ($\sim \Delta^{2/3}$)
- Intermediate to high-n peeling-ballooning modes ($n\sim 20$) are most unstable. Significant second stability to high-n modes at larger widths.
- Stronger shaping \Rightarrow higher β_{Nped} & α_{cped}
- α_{crit} decreases strongly with width (stability is non-local)
• Increasing triangularity (δ_a) is stabilizing, levels off around $\delta_a \sim 0.5$
• Increasing density lowers edge bootstrap current, restricts 2nd stability access. Appears possible to increase performance by operating at lower density; tradeoffs with divertor, ELM size?
• Rotation and non-ideal effects expected to have significant impact
• Simple models give indication of the impact of diamagnetic effects
 – Local $\gamma_{\text{MHD}} > \omega_{\text{pi}}/2$
 – Rogers & Drake suggested modification: $1/(1+1/k_\theta L_p)$
• Simple models suggest significant diamagnetic stabilization, shift of most unstable mode to longer wavelengths ($n \sim 8-20$)
ITER Study Shows QH Regime May be Accessible at Low Density

- **ITER base case**, $R=6.2\,\text{m}$, $a=2\,\text{m}$, $B_t=5.3\,\text{T}$, $I_p=15\,\text{MA}$, 5% pedestal width
- **Reference density** $<n_e>=10.1\times10^{19}\,\text{cm}^{-3}$, $n_{\text{ped}}\approx7\times10^{19}\,\text{cm}^{-3}$
 - High $n\sim20$ ballooning limited at Ref density
- **QH region for $n_{\text{ped}}<\sim4\times10^{19}\,\text{cm}^{-3}$**
 - Worth exploring low density operation (divertor impacts?)
The Peeling-Ballooning Model: Nonlinear Dynamics

- **Nonlinear**: 3D BOUT simulations (reduced Braginskii), include equilibrium scale MHD drives as well as small scale diamagnetic terms in collisional limit

- **Expected P-B linear growth and structure in early phase, followed by explosive burst of one or many filaments into the SOL**
 - Leads to two-prong model of ELM losses (conduits and barrier collapse)

 \[P.B. \ Snyder, \ Phys \ Plasmas \ 2005, \ H.R. \ Wilson, \ PRL \ 2004 \]

- **Nonlinear simulations carried out for DIII-D equilibria in the same range of parameters as ITER (n~20 limited), in region where small Type I ELMs observed**

 - Bursts of one or many filaments
 - Direct ITER simulations more challenging because of smaller \(\rho^* \), but planned
Filamentary structures observed during early ELM evolution (multiple filaments, n~18)
ELITE linear P-B calculations show peak 15<n<25; mode in this range predicted to be first to go unstable
Calculated n=18 structure qualitatively similar to observations
Nonlinear simulations show symmetric structure in early phase, extended uneven filaments later
Summary

- Peeling-ballooning model has achieved a degree of success in explaining pedestal constraints, ELM onset and a number of ELM characteristics
 - Nonlinear explosive growth of one or many filaments, similar to observations
 - Two prong model (conduits and barrier collapse) for ELM losses
 - Low density, strong flow key to Quiescent operation

- Calculations for ITER suggest it can achieve sufficiently high pedestal for good performance, with pedestal width in observed range (Δ/a)
 - Pedestal width physics remains key uncertainty (varies little in existing expts)
 - Some improvement possible at lower density, increased shaping (good design)

- ITER study suggests base operation is in small Type I ELM regime, $n \sim 20$ limited
 - Marginally tolerable for materials (pending detailed understanding of deposition)
 - Need further (direct) nonlinear studies to confirm

- Predicted QH operation in ITER possible at significantly reduced density $n_{\text{ped}} \sim 4 \times 10^{19}$ cm$^{-3}$
 - This low density regime has also been best for RMP ELM suppression
 - Need to consider divertor and other implications of low density operation
References

Hypothesis for QH Mode Mechanism

Avoiding ELMs requires a mechanism to make confinement in the edge regions worse, and must do so robustly and self-consistently across all transport channels.

- QH Mode exists in regime where low-n kink/peeling is limiting, due to low density, high bootstrap current.
- Strong flow can stabilize “ELRWM” branch, leave rotationally destabilized low-n “ideal” (with kinetic and diamagnetic corrections) rotating kink/peeling mode most unstable.
 - This rotating mode is postulated to be the EHO.
- As EHO grows to significant amplitude it couples to wall, damping rotation and damping its own drive.
 - A) Presence of the mode breaks axisymmetry, spreads strike point and stochasticizes surfaces.
 - B) Small scale ballooning instabilities can grow inside low-n EHO structure.
 - -> more particle transport and more efficient pumping, allowing steady state density profile.
 - T_e profile is able to reach a transport steady state in low n_e regime.
- EHO saturates at finite amplitude, resulting in near steady-state in all key transport channels in the pedestal region.
Filaments Observed During ELMs

DIII-D Observation [E Strait, Phys Plas 1997]
- Filament observed in fast magnetics during ELM (left)
- Finger-like structure from simulation (right) is extended along the magnetic field
- Qualitatively similar (rotation rate consistent with toroidal extent)